调控自然杀伤细胞抗肿瘤活性药物的研究进展

阎学伟, 朱诗国

中国药学杂志 ›› 2019, Vol. 54 ›› Issue (6) : 437-443.

PDF(1324 KB)
PDF(1324 KB)
中国药学杂志 ›› 2019, Vol. 54 ›› Issue (6) : 437-443. DOI: 10.11669/cpj.2019.06.002
综述

调控自然杀伤细胞抗肿瘤活性药物的研究进展

  • 阎学伟a, 朱诗国a,b*
作者信息 +

Advances in Antitumor Research of NK Cells Based on Drug Therapy

  • YAN Xue-weia, ZHU Shi-guoa,b*
Author information +
文章历史 +

摘要

自然杀伤(natural killer,NK)细胞是一类不同于T、B细胞的具有细胞毒作用的淋巴细胞。很多NK细胞相关的抗肿瘤免疫疗法已经应用于临床,如NK细胞过继回输、NK细胞抑制性受体抑制剂、促NK细胞因子回输、嵌合抗原受体-NK(chimeric antigen receptor-NK,CAR-NK)细胞回输等。另外,使用药物强化NK细胞抗肿瘤作用的疗法也具有很好的前景。目前存在很多关于药物促进NK细胞识别和杀伤肿瘤细胞的报道,其机制主要与药物上调自然杀伤细胞2族成员D(naturalkiller group 2 member D,NKG2D)配体、自然细胞毒性受体(natural cytotoxicity receptors,NCR)配体、NKG2D受体等的表达及增加促NK细胞相关细胞因子的释放有关。笔者就近年基于药物治疗促进NK细胞抗肿瘤的研究进行综述,为以后的研究提供参考。

Abstract

NK (natural killer) cells are a kind of cytotoxic lymphocytes which have difference from T and B cells. Many NK cell related antitumor immunotherapies have been applied in clinical treatment, such as transfusion of adoptive NK cells, NK cell stimulating cytokines, chimeric antigen receptor-NK (CAR-NK) cells and NK cell inhibitory receptor inhibitors. In addition, the therapy of using drugs to strengthen the anti-tumor effect of NK cells also has a good prospect. There has been many reports on the drug promoting NK cell recognition and killing of tumor cells. The mechanisms are mainly related with modulating the expression of natural-killer group 2 member D (NKG2D) ligands, natural cytotoxic receptor (NCR) ligand, NKG2D receptor and so on, and increasing the release of NK cell stimulating cytokines. In this paper, recent advances in drug therapy based NK cell anti-tumor researches are reviewed, to provide references for the future researches.

关键词

自然杀伤细胞 / 肿瘤 / 免疫治疗 / 自然杀伤细胞2族成员D

Key words

natural killer cells / tumor / immunotherapy / NKG2D

引用本文

导出引用
阎学伟, 朱诗国. 调控自然杀伤细胞抗肿瘤活性药物的研究进展[J]. 中国药学杂志, 2019, 54(6): 437-443 https://doi.org/10.11669/cpj.2019.06.002
YAN Xue-wei , ZHU Shi-guo. Advances in Antitumor Research of NK Cells Based on Drug Therapy[J]. Chinese Pharmaceutical Journal, 2019, 54(6): 437-443 https://doi.org/10.11669/cpj.2019.06.002
中图分类号: R965   

参考文献

[1] CHEN D S, MELLMAN I. Elements of cancer immunity and the cancer-immune set point. Nature, 2017,541(7637):321-330.
[2] HUANG Y, LIANG D, LIU J, et al. The breakthroughs in cancer immune checkpoint based therapy: areview of development in immune checkpoint study and its application. Comb Chem High Throughput Screen, 2017, 20(5):430-439.
[3] ROSENBAUM L. Tragedy, perseverance, and chance-the story of CAR-T therapy. N Engl J Med, 2017,377(14):1313-1315.
[4] QUINTAS-CARDAMA A. CAR T-cell therapy in large B-cell lymphoma. N Engl J Med, 2018,378(11):1065.
[5] SPAIN L, DIEM S, LARKIN J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev, 2016, 44: 51-60.
[6] HEINZERLING L, OTT P, HODI F, et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer, 2016,4: 50.
[7] SCHUBERT M, HOFFMANN J, DREGER P, et al. Chimeric antigen receptor transduced T cells: tuning up for the next generation. Int J Cancer, 2017, 142(9):1738-1747.
[8] DE FRANCESCO L. CAR-T cell therapy seeks strategies to harness cytokine storm. Nat Biotechnol, 2014, 32(7):604.
[9] LJUNGGREN H G, MALMBERG K J. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol, 2007,7(5):329-339.
[10] MORVAN M G, LANIER L L. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer, 2016, 16(1):7-19.
[11] VIVIER E, RAULET D H, MORETTA A, et al. Innate or adaptive immunity? The example of natural killer cells. Science, 2011,331(6013):44-49.
[12] BORDON Y. Innate lymphoid cells: on the origin of ILCs. Nat Rev Immunol, 2014, 14(3):133.
[13] NATARAJAN K, DIMASI N, WANG J, et al. Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu Rev Immunol, 2002, 20: 853-885.
[14] SUN J C, BEILKE J N, LANIER L L. Adaptive immune features of natural killer cells. Nature, 2009, 457(7229):557-561.
[15] LONG E O, KIM H S, LIU D, et al. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol, 2013, 31: 227-258.
[16] MARTINET L, SMYTH M J. Balancing natural killer cell activation through paired receptors. Nat Rev Immunol, 2015, 15(4):243-254.
[17] MORETTA A, BOTTINO C, VITALE M, et al. Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol, 1996, 14: 619-648.
[18] DENG W, GOWEN B G, ZHANG L, et al. Antitumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science, 2015, 348(6230):136-139.
[19] RAULET D H, GASSER S, GOWEN B G, et al. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol, 2013, 31: 413-441.
[20] RAULET D H. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol, 2003, 3(10):781-790.
[21] ALVAREZ-BRECKENRIDGE C A, YU J, PRICE R, et al. NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat Med, 2012, 18(12):1827-1834.
[22] PENDE D, BOTTINO C, CASTRICONI R, et al. PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol Immunol, 2005, 42(4):463-469.
[23] CHILDS R W, CARLSTEN M. Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat Rev Drug Discov, 2015, 14(7):487-498.
[24] FERGUSON F, GRAY N. Kinase inhibitors: the road ahead. Nat Rev Drug Discov, 2018,17(5):353-377.
[25] HASSOLD N, SEYSTAHL K, KEMPF K, et al. Enhancement of natural killer cell effector functions against selected lymphoma and leukemia cell lines by dasatinib. Int J Cancer, 2012, 131(6):916-927.
[26] SALIH J, HILPERT J, PLACKE T, et al. The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int J Cancer, 2010,127(9):2119-2128.
[27] KIM H, KIM S H, KIM M J, et al. EGFR inhibitors enhanced the susceptibility to NK cell-mediated lysis of lung cancer cells. J Immunother, 2011, 34(4):372-381.
[28] YEUNG D T, TANG C, VIDOVIC L, et al. KIR2DL5B genotype predicts outcomes in CML patients treated with response-directed sequential imatinib/nilotinib strategy. Blood, 2015, 126(25):2720-2723.
[29] SOPPER S, MUSTJOKI S, GJERTSEN B T, et al. NK cell dynamics and association with molecular response in early chronic phase chronic myelogenous leukemia (CML-CP) patients treated with nilotinib. Leukemia, 2017, 31(10):2264-2267.
[30] HUANG Y, WANG Y, LI Y, et al. Role of sorafenib and sunitinib in the induction of expressions of NKG2D ligands in nasopharyngeal carcinoma with high expression of ABCG2. J Cancer Res Clin Oncol, 2011, 137(5):829-837.
[31] SPRINZL M F, REISINFER F, PUSCHNIK A, et al. Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology, 2013, 57(6):2358-2368.
[32] ROMERO A I, CHAPUT N, POIRIER-COLAME V, et al. Regulation of CD4(+)NKG2D(+) Th1 cells in patients with metastatic melanoma treated with sorafenib: role of IL-15Ralpha and NKG2D triggering. Cancer Res, 2014, 74(1):68-80.
[33] FALKENBERG K, JOHNSTONE R. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov, 2014, 13(9):673-691.
[34] SATWANI P, BAVISHI S, SAHA A, et al. Upregulation of NKG2D ligands in acute lymphoblastic leukemia and non-Hodgkin lymphoma cells by romidepsin and enhanced in vitro and in vivo natural killer cell cytotoxicity. Cytotherapy, 2014, 16(10):1431-1440.
[35] SHI J, TRICOT G J, GARG T K, et al. Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood, 2008, 111(3):1309-1317.
[36] LUNDQVIST A, YOKOYAMA H, SMITH A, et al. Bortezomib treatment and regulatory T-cell depletion enhance the antitumor effects of adoptively infused NK cells. Blood, 2009, 113(24):6120-6127.
[37] HU W, ZHENG R R, CUI H X, et al. Effects of bortezomib in sensitizing human prostate cancer cell lines to NK-mediated cytotoxicity. Asian J Androl, 2012, 14(5):695-702.
[38] JARDINE L, HAMBLETON S, BIGLEY V, et al. Sensitizing primary acute lymphoblastic leukemia to natural killer cell recognition by induction of NKG2D ligands. Leuk Lymphoma, 2013, 54(1):167-173.
[39] ZHANG C, WANG Y, ZHOU Z, et al. Sodium butyrate upregulates expression of NKG2D ligand MICA/B in HeLa and HepG2 cell lines and increases their susceptibility to NK lysis. Cancer Immunol Immunother, 2009, 58(8):1275-1285.
[40] CHU E, CALLENDER M A, FARRELL M P, et al. Thymidylate synthase inhibitors as anticancer agents: from bench to bedside. Cancer Chemother Pharmacol, 2003, 52(suppl 1):80-89.
[41] AKETA H, TATSUMI T, KOHGA K, et al. The combination therapy of alpha-galactosylceramide and 5-fluorouracil showed antitumor effect synergistically against liver tumor in mice. Int J Cancer, 2013, 133(5):1126-1134.
[42] ZHAO L, WANG W J, ZHANG J N, et al. 5-Fluorouracil and interleukin-2 immunochemotherapy enhances immunogenicity of non-small cell lung cancer A549 cells through upregulation of NKG2D ligands. Asian Pac J Cancer Prev, 2014, 15(9):4039-4044.
[43] SCHMIEDEL B J, ARELIN V, GRUENEBACH F, et al. Azacytidine impairs NK cell reactivity while decitabine augments NK cell responsiveness toward stimulation. Int J Cancer, 2011, 128(12):2911-2922.
[44] CANY J, ROEVEN M, HOOGSTAD-VAN E J, et al. Decitabine enhances targeting of AML cells by CD34(+) progenitor-derived NK cells in NOD/SCID/IL2Rg(null) mice. Blood, 2018, 131(2):202-214.
[45] MORISAKI T, ONISHI H, KOYA N, et al. Combinatorial cytotoxicity of gemcitabine and cytokine-activated killer cells in hepatocellular carcinoma via the NKG2D-MICA/B system. Anticancer Res, 2011, 31(7):2505-2510.
[46] SIENA L, PACE E, FERRARO M, et al. Gemcitabine sensitizes lung cancer cells to Fas/FasL system-mediated killing. Immunology, 2014, 141(2):242-255.
[47] WENNERHERG E, SARHAN D, CARLSTEN M, et al. Doxorubicin sensitizes human tumor cells to NK cell-and T-cell-mediated killing by augmented TRAIL receptor signaling. Int J Cancer, 2013, 133(7):1643-1652.
[48] BAE J H, KIM J Y, KIM M J, et al. Quercetin enhances susceptibility to NK cell-mediated lysis of tumor cells through induction of NKG2D ligands and suppression of HSP70. J Immunother, 2010, 33(4):391-401.
[49] KIM J H, LEE J K. Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt′s lymphoma cells. Arch Pharm Res, 2015, 38(11):2042-2048.
[50] KIM J H, LEE J K. Sesamolin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt′s lymphoma cells. Int Immunopharmacol, 2015, 28(2):977-984.
[51] KUMAR S, TOMAR M S, ACHARYA A. Chelerythrine delayed tumor growth and increased survival duration of Dalton′s lymphoma bearing BALB/c H(2d) mice by activation of NK cells in vivo. J Cancer Res Ther, 2015, 11(4):904-910.
[52] YAO C, NI Z, GONG C, et al. Rocaglamide enhances NK cell-mediated killing of non-small cell lung cancer cells by inhibiting autophagy. Autophagy, 2018, 14(10):1831-1844.
[53] SIEW Y Y, NEO S Y, YEW H C, et al. Oxaliplatin regulates expression of stress ligands in ovarian cancer cells and modulates their susceptibility to natural killer cell-mediated cytotoxicity. Int Immunol, 2015, 27(12):621-632.
[54] AMIN P J, SHANKAR B S. Sulforaphane induces ROS mediated induction of NKG2D ligands in human cancer cell lines and enhances susceptibility to NK cell mediated lysis. Life Sci, 2015, 126: 19-27.
[55] FERNANDEZ L, VALENTIN J, ZALACAIN M, et al. Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D-NKG2DL dependent manner. Cancer Lett, 2015, 368(1):54-63.
[56] LEUNG W H, VONG Q P, LIN W, et al. Modulation of NKG2D ligand expression and metastasis in tumors by spironolactone via RXRgamma activation. J Exp Med, 2013, 210(12):2675-2692.
[57] KIM S J, HA G H, BAE J H, et al. COX-2-and endoplasmic reticulum stress-independent induction of ULBP-1 and enhancement of sensitivity to NK cell-mediated cytotoxicity by celecoxib in colon cancer cells. Exp Cell Res, 2015, 330(2):451-459.
[58] SRIVASTAVA R M, LEE S C, ANDRADE F P, et al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res, 2013, 19(7):1858-1872.
[59] MIN D, LU X B, WANG X, et al. Downregulation of miR-302c and miR-520c by 1,25(OH)2D3 treatment enhances the susceptibility of tumour cells to natural killer cell-mediated cytotoxicity. Br J Cancer, 2013, 109(3):723-730.
[60] FIONDA C, MALGARINI G, SORIANI A, et al. Inhibition of glycogen synthase kinase-3 increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of STAT3. J Immunol, 2013, 190(12):6662-6672.
[61] LAI H C, CHANG C J, YANG C H, et al. Activation of NK cell cytotoxicity by the natural compound 2,3-butanediol. J Leukoc Biol, 2012, 92(4):807-814.
[62] SAND K L, KNUDSEN E, ROLIN J, et al. Modulation of natural killer cell cytotoxicity and cytokine release by the drug glatiramer acetate. Cell Mol Life Sci, 2009, 66(8):1446-1456.
[63] CHU M, XU L, ZHANG M B, et al. Role of baicalin in anti-influenza virus as a potent inducer of IFN-Gamma. Biomed Res Int, 2015(5):1-11.
[64] GUO Y, FENG X, JIANG Y, et al. PD1 blockade enhances cytotoxicity of in vitro expanded natural killer cells towards myeloma cells. Oncotarget, 2016,7(30):48360-48374.
[65] CHEN H, ZHIDAN W, XIA R, et al. Scorpion venom activates natural killer cells in hepatocellular carcinoma via the NKG2D-MICA pathway. Int Immunopharmacol, 2016,35: 307-314.
[66] LIAN G Y, WANG Q M, TANG P M, et al. Combination of asiatic acid and naringenin modulates NK cell anti-cancer immunity by rebalancing Smad3/Smad7 signaling. Mol Ther, 2018, 26(9):2255-2266.

基金

国家自然科学基金项目资助(81473237)
PDF(1324 KB)

Accesses

Citation

Detail

段落导航
相关文章

/